Thứ Bảy, 17 tháng 3, 2012

XỬ LÝ NITƠ TRONG NƯỚC

1. Trạng thái tồn tại của Nitơ trong nước thải:
Trong nước thải, các hợp chất của nitơ tồn tại dưới 3 dạng: các hợp chất hữu cơ, amoni và các hợp chất dạng ôxy hoá (nitrit và nitrat).

Trong nước thải sinh hoạt nitơ tồn tại dưới dạng vô cơ (65%) và hữu cơ (35%). Nguồn nitơ chủ yếu là từ nước tiểu. Mỗi người trong một ngày xả vào hệ thống thoát nước 1,2 lít nước tiểu, tương đương với 12 g nitơ tổng số. Trong số đó nitơ trong urê (N-CO(NH­2)2) là 0,7g, còn lại là các loại nitơ khác.
2. Tác hại của ô nhiễm Nitơ đối với môi trường
Nitơ trong nước thải cao, chảy vào sông, hồ làm tăng hàm lượng chất dinh dưỡng. Do vậy nó gây ra sự phát triển mạnh mẽ của các loại thực vật phù du như rêu, tảo gây tình trạng thiếu oxy trong nước, phá vỡ chuỗi thức ăn, giảm chất lượng nước, phá hoại môi trường trong sạch của thủy vực, sản sinh nhiều chất độc trong nước như NH4+, H2S, CO2, CH4... tiêu diệt nhiều loại sinh vật có ích trong nước. Hiện tượng đó gọi là phú dưỡng nguồn nước
Hiện nay, phú dưỡng thường gặp trong các hồ đô thị, các sông và kênh dẫn nước thải. Đặc biệt là tại khu vực Hà Nội, sông Sét, sông Lừ, sông Tô Lịch đều có màu xanh đen hoặc đen, có mùi hôi thối do thoát khí HS. Hiện tượng này tác động tiêu cực tới hoạt động sống của dân cư đô thị, làm biến đổi hệ sinh thái của nước hồ, tăng thêm mức độ ô nhiễm không khí của khu dân cư.
3.     Tác hại của Nitơ đối với quá trình xử lý nước
Sự có mặt của Nitơ có thể gây cản trở cho các quá trình xử lý làm giảm hiệu quả làm việc của các công trình. Mặt khác nó có thể kết hợp với các loại hoá chất trong xử lý để tạo các phức hữu cơ gây độc cho con người.
Với đặc tính như vậy việc xử lý Nitơ trong giai đoạn hiện nay đang là vấn đề đáng được nghiên cứu và ứng dụng.Vấn đề này đã được các nhà nghiên cứu, các học giả đi sâu tìm hiểu
 4.    Xử lý nitơ trong nước thải bằng phương pháp sinh học
4.1  Cơ sở lý thuyết các quá trình xử lý nitơ bằng phương pháp sinh học
Trong quá trình xử lý nước thải bằng phương pháp sinh học hiếu khí, nitơ amôn sẽ được chuyển thành nitrit và nitrat nhờ các loại vi khuẩn Nitrosomonas và Nitrobacter. Khi môi trường thiếu ôxy, các loại vi khuẩn khử nitrat  Denitrificans (dạng kỵ khí tuỳ tiện) sẽ tách ôxy của nitrát (NO3-) và nitrit (NO2-) để ôxy hoá chất hữu cơ. Nitơ phân tử N2 tạo thành trong quá trình này sẽ thoát ra khỏi nước.


Qúa trình chuyển hóa Nitơ trong nước thải
Quá trình chuyển NO3- ® NO2- ® NO ® N2O ® N2 với việc sử dụng mêtanol làm nguồn các bon được biểu diễn bằng các phương trình sau đây:
          4.2.     Nitrat hóa
Nitrat hoá là một quá trình tự dưỡng (năng lượng cho sự phát triển của vi khuẩn được lấy từ các hợp chất ôxy hoá của Nitơ, chủ yếu là Amôni. Ngược với các vi sinh vật dị dưỡng các vi khuẩn nitrat hoá sử dụng CO2 (dạng vô cơ) hơn là các nguồn các bon hữu cơ để tổng hợp sinh khối mới. Sinh khối của các vi khuẩn nitrat hoá tạo thành trên một đơn vị của quá trình trao đổi chất nhỏ hơn nhiều lần so với sinh khối tạo thành của quá trình dị dưỡng.
Quá trình Nitrat hoá từ Nitơ Amôni được chia làm hai bước và có liên quan tới hai loại vi sinh vật , đó là vi khuẩn Nitơsomonas và Vi khuẩn Nitơbacteria. ở giai đoạn đầu tiên amôni được chuyển thành nitrit và ở bước thứ hai nitrit được chuyển thành nitrat
Bước 1. NH4-   + 1,5 O2  à NO2- + 2H+ + H2O
Bước 2.    NO-2  +   0,5 O2     à     NO3-
Các vi khuẩn Nitơsomonas và Vi khuẩn Nitơbacteria sử dụng năng lượng lấy từ các phản ứng trên để tự duy trì hoạt động sống và tổng hợp sinh khối. Có thể tổng hợp quá trình bằng phương trình sau :
NH4-   +  2 O2  à NO3- + 2H+ + H2O  (*)
Cùng với quá trình thu năng lượng, một số iôn Amôni được đồng hoá vận chuyển vào trong các mô tế bào. Quá trình tổng hợp sinh khối có thể biểu diễn bằng phương trình sau :
4CO2 +  HCO3- + NH+4 + H2à  C5H7O2N   +   5O2
C5H7O2N tạo thành được dùng để tổng hợp nên sinh khối mới cho tế bào vi khuẩn.
Toàn bộ quá trình ôxy hoá và phản ứng tổng hợp  được thể hiện qua phản ứng sau : NH4++1,83O2+1,98 HCO3- à 0,021C5H7O2N + 0,98NO3-+1,041H2O+1,88H2CO3
Lượng ôxy cần thiết để ôxy hoá amôni thành nitrat cần 4,3 mg O2/ 1mg NH4+. Giá trị này gần bằng với giá trị 4,57 thường được sử dụng trong các công thức tính toán thiết kế. Giá trị 4,57 được xác định từ phản ứng (*) khi mà quá trình tổng hợp sinh khối tế bào không được xét đến.
4.3.     Khử nitrit và nitrat:
Trong môi trường thiếu ôxy các loại vi khuẩn khử nitrit và nitrat Denitrificans (dạng kị khí tuỳ tiện) sẽ tách ôxy của nitrat (NO3-) và nitrit (NO2-) để ôxy hoá chất hữu cơ. Nitơ phân tử N2 tạo thành trong quá trình này sẽ thoát ra khỏi nước.
+ Khử nitrat :
NO3-  + 1,08 CH3OH + H+ à 0,065 C5H7O2N + 0,47 N2 + 0,76CO2 + 2,44H2O
+ Khử nitrit :
NO2-  + 0,67 CH3OH + H+ à 0,04 C5H7O2N + 0,48 N2 + 0,47CO2 + 1,7H2O
Như vậy để khử nitơ công trình xử lý nước thải cần :
Điều kiện yếm khí ( thiếu ôxy tự do )
Có nitrat (NO3- ) hoặc nitrit (NO2-)
Có vi khuẩn kị khí tuỳ tiện khử nitrat;
Có nguồn cácbon hữu cơ
Nhiệt độ nước thải không thấp.
5.           Các dây chuyền và công trình xử lý nitơ trong nước thải
5.1.     Dây chuyền công nghệ xử lý nitơ
-         Quá trình hậu phản (Post - denitrification)
Nitrat hóa (Xử lý sinh học bậc 2) ® Phản nitrat(Xử lý bậc 3)
Sơ đồ dây chuyên xử lý Nitơ trong nước thải - Qúa trình hậu phản
-Quá trình tiền phản (Pre – denitrification)
Khử nitrat (Oxi hóa hợp chất hữu cơ trong điều kiện kỵ khí) ® nitrat hóa (xử lý bậc 2)

-   Quá trình kết hợp 2 phương pháp trên bằng cách tráo đổi các quá trình nitrat hóa và phản nitrat






Hình 6. Sơ đồ dây chuyên xử lý Nitơ trong nước thải – Kết hợp 2 quá trình tiền phản và hậu phản



5.2.     Một số dạng công trình kết hợp xử lý BOD/N
5.2.1.     Kênh ôxy hoá tuần hoàn
Sơ đồ dây chuyên xử lý Nitơ trong nước thải – Kênh oxi hóa tuần hoàn
Kênh ôxy hoá tuần hoàn hoạt động theo nguyên lý thổi khí bùn hoạt tính kéo dài. Quá trình thổi khí đảm bảo cho việc khử BOD và ổn định bùn nhờ hô hấp nội bào. Vì vậy bùn hoạt tính dư ít gây hôi thối và khối lượng giảm đáng kể.
Các chất hữu cơ trong công trình hầu như được ôxy hoá hoàn toàn, hiệu quả khử BOD đạt 85¸95%. Trong vùng hiếu khí  diễn ra quá trình ôxy hoá hiếu khí các chất hữu cơ và nitrat hoá. Trong vùng thiếu khí (hàm lượng ôxy hoà tan thường dưới 0,5 mg/l) diễn ra quá trình hô hấp kỵ khí và khử nitrat.
Để khử N trong nước thải, người ta thường tạo điều kiện cho quá trình khử nitrat diễn ra trong công trình. Kênh ôxy hoá tuần hoàn hoạt động theo nguyên tắc của aerôten đẩy và các guồng quay được bố trí theo một chiều dài nhất định nên dễ tạo cho nó được các vùng hiếu khí (aerobic) và thiếu khí (anoxic) luân phiên thay đôỉ. Quá trình nitrat hoá và khử nitrat cũng được tuần tự thực hiện trong các vùng này Hiệu quả khử nitơ trong kênh ôxy hoá tuần hoàn có thể đạt từ 40¸80%
5.2.2.     Aerôten hoạt động  gián đoạn theo mẻ (hệ SBR)
Sơ đồ dây chuyên xử lý Nitơ trong nước thải – Bể SBR
Các giai đoạn hoạt động diễn ra trong một ngăn bao gồm: làm đầy nước thải, thổi khí, để lắng tĩnh, xả n­ước thải và xả bùn dư.








Các giai đoạn hoạt động trong bể SBR
Trong bư­ớc một, khi cho n­ước thải vào bể, n­ước thải đ­ược trộn với bùn hoạt tính lưu lại từ chu kỳ trư­ớc. Sau đấy hỗn hợp n­ước thải và bùn đ­ược sục khí ở bư­ớc hai với thời gian thổi khí đúng như­ thời gian yêu cầu. Quá trình diễn ra gần với điều kiện trộn hoàn toàn và các chất hữu cơ đ­ược ôxy hoá trong giai đoạn này. B­ước thứ ba là quá trình lắng bùn trong điều kiện tĩnh. Sau đó nư­ớc trong nằm phía trên lớp bùn được xả ra khỏi bể. Bước cuối cùng là xả l­ượng bùn dư­ đ­ược hình thành trong quá trình thổi khí ra khỏi ngăn bể, các ngăn bể khác hoạt động lệch pha để đảm bảo cho việc cung cấp n­ước thải lên trạm XLNT liên tục.
Công trình hoạt động gián đoạn, có chu kỳ. Các quá trình trộn nư­ớc thải với bùn, lắng bùn cặn,... diễn ra gần giống điều kiện lý t­ưởng nên hiệu quả xử lý nư­ớc thải cao. BOD của nước thải sau xử lý th­ường thấp hơn 20 mg/l, hàm l­ợng cặn lơ lửng từ 3 đến 25 mg/l và N-NH3 khoảng từ 0,3 đến 12 mg/l.
Hệ thống aerôten hoạt động gián đoạn SBR có thể khử đ­ược nitơ và phốt pho sinh hoá do có thể điều chỉnh đư­ợc các quá trình hiếu khí, thiếu khí và kỵ khí trong bể bằng việc thay đổi chế độ cung cấp ôxy
5.3.           Xử lý kết hợp nitơ và phốt pho
Phốt pho xâm nhập vào nước có nguồn gốc từ nước thải đô thị, phân hoá học, cuốn trôi từ đất, nước mưa hoặc phốt pho trầm tích hoà tan trở lại
Phốt pho trong nước thường tồn tại dưới dạng orthophotphat (PO43-,HPO42-, H2PO4-,H3PO4) hay polyphotphat [Na3(PO3)6] và phốt phát hữu cơ. Tất cả các dạng polyphotphat như pyrometaphotphat Na2(PO4)6, tripolyphotphat Na5P3O10, pyrophotphat Na4P2O7  đều chuyển hoá về dạng orthophotphat  trong môi trường nước.
Trong nước mưa, hàm lượng nitơ và phốt pho  phụ thuộc vào lưu vực thoát nước, đặc điểm mặt phủ ...
Bảng : Lượng nitơ và phốt pho theo nước mưa chảy vào sông, hồ, kg/ha.năm.
Nguyên tố
Rừng
Nông nghiệp
Đô thị
Nước  mưa
Nitơ
3
(1,3 -10,2)
5
(0,5-50)
5
(1-20)
24
Phốt pho
0,4
(0,01-0,9)
0,5
(0,1-5)
1
(0,1-10)
1
(0,05-5)
Hợp chất photpho tự  nhiên  không độc hại , chỉ có một số loại tổng hợp este trung tính  của axit photphoric  dùng làm hoá chất bảo vệ thực vật  là có độc tính cao. Trong nước bị ô nhiễm,  hàm lượng photpho (tính theo photphat)  không lớn, khoảng 0,1 mg/l, chủ yếu dạng orthophotphat .  Trong nước thải  nồng độ photphat cao . Phốt pho là nguyên nhân chính gây ra bùng nổ tảo ở một số nguồn nước mặt , gây ra hiện tượng tái nhiễm bẩn và nước có màu, mùi khó chịu.
5.3.1.     Kết hợp xử lý Phốt pho và Nitơ trong nước thải bằng phương pháp sinh học
Một trong những quá trình xử lý bằng phương pháp sinh học đang được phát triển đó là kết hợp xử lý cả nitơ và photpho. Bằng cách sử dụng bùn hoạt tính, các hợp chất trong các quá trình xử lý thiếu khí (anoxic), xử lý hiếu khí (aerobic), xử lý yếm khí (anaerobic) kết hợp hoặc riêng biệt để thực hiện quá trình khử nitơ và photpho. Ban đầu quá trình này được phát triển để khử Photpho, sau đó là kết hợp khử cả nitơ và photpho.
Các công nghệ được sử dụng thông dụng nhất là:
-                     Quy trình A2/O
-                     Quy trình Bardenpho (5 bước)
-                     Quy trình UCT
-                     Quy trình VIP
Kỹ thuật xử lý mẻ kế tiếp cũng có khả năng kết hợp khử Nitơ và Phốtpho
Quy trình A2/O
Quy trình này được cải tiến từ quy trình A/O và bổ sung thêm vùng cấp oxi để khử nitrat. Giai đoạn lưu trong quá trình thiếu khí xấp xỉ một giờ. Tại vùng anoxic (thiếu oxy), vi sinh vật lấy oxi từ nitrat (NO3-) và nitrit (NO22-), lượng nitrat và nitrit được bổ sung bởi hỗn hợp nước thải tuần hoàn từ sau vùng aerobic. Hàm lượng phótpho tập trung trong nước nước thải nhỏ hơn 2mg/l là có thể chấp nhận được với nước thải không có công đoạn lọc, và nhỏ hơn 1.5mg/l với nước thải sau lọc.
Quy trình Bardenpho (5 giai đoạn)
Từ bể Bardenpho 4 giai đoạn để xử lý Nitơ, bổ sung thêm 1 giai đoạn để kết hợp khử cả nitơ và photpho. Thêm giai đoạn thứ 5 là quá trình yếm khí anarobic để khử photpho lên đầu tiên của quy trình kết hợp khử nitơ, photpho. Sự sắp xếp các giai đoạn và cách tuần hoàn hỗn hợp nước thải sau các vùng cũng khác nhau và khác quy trình xử lý A2/O. Hệ thống 5 bước cung cấp các vùng anaerobic, anoxic, aerobic để khử cả Nitơ, Photpho và hợp chất hữu cơ. Vùng Anoxic (giai đoạn 2) để khử nitrat và được bổ sung nitrat từ bể aerobic (giai đoạn 3). Bể aerobic cuối cùng tách khí N2 ra khỏi nước và giảm hàm lượng Photpho xuống tối đa. Thời gian xử lý kéo dài hơn quy trình A2/O. Tổng thời gian lưu nước là 10-40ngày, tăng sinh khối của vi sinh vật
Quy trình UCT
Được sáng tạo tại trượng đại học Cape Town, giống quy trinh A2/O nhưng có 2 sự khác biệt. Thứ nhất, bùn hoạt tính được tuần hoàn đến bể Anoxic thay vì bể anaerobic. Thứ hai, xuất hiện vòng tuần hoàn từ bể anoxic đến anaerobic. Bùn hoạt tính đến bể anoxic, hàm lượng nitrat trong bể anaerobic sẽ bị loại bỏ, theo đó ta tách được photpho trong bể anaerobic. Bản chất của vòng tuần hoàn giữa các bể là cung cấp hợp chất hữu cơ đến bể anaerobic. Hợp chất từ bể anoxic bao gồm các hợp chất hữu cơ hòa tan (BOD) nhưng hàm lượng nitrat rất ít, tạo điều kiện tốt nhất để lên men kỵ khí trong bể anaerobic. Vào năm 1989, chưa có nhà máy nào tại Mỹ sử dụng quá trình này.
Quy trình VIP (Virginia Initiative Plant in Norfolk. Virginia)
Quy trình này giống A2/O và UCT ngoại trừ cách tuần hoàn hỗn hợp nước thải giữa các bể. Bùn hoạt tính cùng với nước thải sau bể aerobic (đã khử nitrat) được đưa lại bể anoxic. Nước thải từ bể anoxic quay trở lại đầu vào của anaerobic. Trên cơ sở những dữ liệu kiểm tra được, xuất hiện một số hợp chất hữu cơ trong nước thải đầu vào, đảm bảo sự ổn đinh trong hoạt động của bể kỵ khí, làm giảm nhanh chóng lượng oxi theo yêu cầu.
5.3.2.     So sánh ưu, nhược điểm của các quá trình kết hợp xử lý cả nitơ và photpho
Các quá trình
Ưu điểm
Nhược điểm
A2/O
Bùn thải có một hàm lượng tương đối cao phôtpho ( 3 – 5%) và là một nguồn phân bón giá trị
Khả năng khử nitrat cao hơn so với dây chuyền A/O.
Hoạt động dưới điều kiện khí hậu lạnh thường không ổn định
Phức tạp hơn so với công nghệ A/O
Bardenpho
Tạo ra ít bùn thải nhất trong hệ thống các phương pháp xử lý phốtpho hiện thời.
Bùn thải có một hàm lượng tương đối cao phôtpho và là một nguồn phân bón giá trị.
Có khả năng giảm thiểu tổng lượng nitơ tới mức thấp, tốt hơn so với đa số các phương pháp khác.
Độ kiềm được khôi phục cho hệ thống.Vì vậy có thể tiết kiệm lượng hoá chất tiêu thụ
Được sử dụng rộng rãi ở Nam Phi và những nơi có điều kiệnvề tài chính
Với nhiều vòng tuần hoàn, cần phải tính toán thêm công suất của bơm và các yêu cầu về vấn đề bảo dưỡng.
Mới chỉ được thí nghiệm chủ yếu ở Mỹ.
Những yêu cầu cho hoá chất phụ trợ thường không ổn định.
Yêu cầu khối tích lớn hơn so với quá trình A2/O.
UCT
Luân chuyển các vùng Anoxic để loại bỏ quá trình tái hợp của Nitrat và cung cấp môi trường tách phôtpho tốt hơn trong các vùng Anaerobic.
Dung tích ngăn phản ứng nhỏ hẹp hơn so với quá trình Bardenpho.
Chưa có những công trình thực tế tại Mỹ.
Ảnh hưởng của nhiệt độ đến hiệu suất quá trình vẫn chưa được chuẩn hoá.
Tỷ suất BODF yêu cầu cao
Những yêu cầu đối với hoá chất phụ trợ không ổn định
Tuần hoàn nội vi rộng làm tăng điện năng tiêu thụ của máy bơm và các yêu cầu vận hành bảo dưỡng.
VIP
Tuần hoàn nitrat qua vùng anoxic để giảm lượng ôxy yêu cầu và lượng kiềm tiêu thụ.
Luân phiên nước thải từ vùng anoxic sang vùng anaerobic để giảm lượng nitrat trong vùng hiếu khí.
Có thể áp dụng để xử lý Nitơ tạm thời hoặc phốt pho quanh năm
Tuần hoàn nội vi rộng làm tăng điện năng tiêu thụ của máy bơm và các yêu cầu vận hành bảo dưỡng.
Chỉ mới được áp dụng hạn chế tại Mỹ
Nhiệt độ thấp làm giảm khả năng tách Nitơ .

Thứ Sáu, 2 tháng 12, 2011

XỬ LÝ NITO VA AMONI TRONG NƯỚC THẢI

XỬ LÝ NITO VÀ AMONI TRONG NƯỚC THẢI BẰNG SẢN PHẨM
BIO-SYSTEM – BIOBUG NH3

1. Mô Tả
Dòng sản phẩm này chứa hỗn hợp các vi sinh vật được pha trộn đặc biệt cung cấp các yếu tố cơ bản cho các quá trình chuyển hoá nitơ.
            Vi khuẩn nitrate hóa được phân ra 2 nhóm:  Nitrosomonas spp. và Nitrobacter spp.
Nitrosomonas spp. chuyển hóa ammonia thành nitrite và Notrobacter spp. chuyển hoá nitrite thành nitrate. Vi khuẩn nitrate hóa là loại tự dưỡng (có khả năng sử dụng carbon dioxide như là 1 nguồn carbon tự nhiên ) và phát triển tương đối chậm. Là loại vi khuẩn có thể nhân đôi từ 8-16 giờ. Vi khuẩn này nhạy cảm với oxy, cần tương tác cao với môi trường không khí để cho tỉ lệ tăng trưởng tối đa. Sự biến động pH, nhiệt độ và nồng độ các chất hữu cơ ảnh hưởng đến hoạt động và khả năng sinh trưởng của vi khuẩn nitrate. Do đó nồng độ nitơ tổng của nhiều loại nước thải được giảm thiểu hoặc bị đẩy ra khỏi hệ thống bởi không đủ lượng để tái sản xuất ở 1 tỉ lệ đủ

Bằng việc sử dụng sức căng chọn lọc của cả Nitrosomonas spp và Notrobacter spp. nên sản phẩm này có thể thích nghi được ở môi trường pH biến động hơn so với các chuẩn vi khuẩn khử nitrate thông thường. Với sự thích ứng tốt và kĩ thuật chọn lọc cao nên sản phẩm làm giới hạn sự tập trung của ammonia, nitrate và nitrite và phân giải để tạo thành khí Nito, vừa có thể ngăn chặn sự phát triển các vi sinh vật có hại khác trong môi trường ao nuôi . BIOBUG NH3  là sản phẩm đã chứng minh được khả năng loại bỏ ammonia, nitrite và nitrate.
Sự nitrat hóa và sự loại bỏ nitrat hóa là quá trình nitơ được tái tạo trong hệ sinh thái nước, nitrate hóa  là 1 quá trình  mà amonia nitrogen bị oxit hóa thành nitrate. Hai sinh vật  có trách nhiệm nitrat hóa trong hệ sinh thái nước. Sinh vật nitrosomonas có vai trò chuyển hóa NH3 thành NO2, NO2 và rồi thành NO3  bằng các sinh vật nitrobacter. Các sinh vật này giúp tăng quá trình khử nitrite và nitrate thành công trong hệ thống xử lý nước thải và các ao nuôi trồng thủy sản. Điều kiện cần thiết để vi sinh phát triển tốt:
- pH: từ 7.0 – 9.0, tốt nhất ở 7.8
- Độ kiềm:  tiêu thụ 7.1 CaCO3/NH3
- Nhiệt độ: 8oC – 40oC
- Oxy hòa tan: 4.5mgO2/mgNH3

2. Lợi Ích Của BIOBUG NH3:
  • Tăng quá trình nitrate hóa trong các hệ thống hoạt động theo mẻ hoặc hệ thống hiếu khí hoạt động không liên tục.
  • Tăng quá trình nitrate hóa trong các ao nuôi trồng thủy sản
  • Hỗ trợ cung cấp dưỡng chất cho các hệ thống đã có quá trình khử nitrate trước đó.
  •  Bổ sung vi sinh vật cho quá trình nuôi cấy lại.
  • Tái tạo điều kiện sống cho các vi sinh vật khử nitrite và nitrate khi mà trước đó có các điều kiện sinh hoá bất lợi cho sự phát triển của ví sinh vật.
  • Giảm chi phí và an toàn với môi trường

3. Kết quả thu được từ quá trình sử dụng sản phẩm
  • Kết quả đạt được từ việc sử dụng sản phẩm là Amoni trong nước thải dưới 2mg/l, Nito tong trong nước thải giảm từ 50% - 80% so với ban đầu.

Thứ Tư, 4 tháng 11, 2009

XỬ LÝ NƯỚC THẢI TINH BỘT SẮN

A./ Giới thiệu công nghệ sản xuất tinh bột sắn ở Thái Lan và Trung Quốc





C./ Công nghệ sản xuất tinh bột sắn ở Việt Nam




1. Công nghệ sản xuất tinh bột sắn ở quy mô công nghiệp
Nhà máy sản xuất tinh bột sắn được sản xuất với công nghệ và thiết bị hiện đại cho năng suất thu hồi tinh bột cao và định mức tiêu hao nguyên nhiên liệu thấp. Công nghệ sản xuất tinh bột sắn thường nhập từ nước ngoài. Một số nhà máy áp dụng công nghệ sản xuất tinh bột sắn ở Thái lan như: Nhà máy sản xuất tinh bột sắn Đaklak, Quảng Ngãi, Việt Nam tapioca (Tây ninh)…; Áp dụng công nghệ của Trung Quốc như: Nhà máy sản xuất tinh bột sắn Thừa Thiên Huế.
2. Công nghệ sản xuất tinh bột sắn tại các làng nghề.
Sản xuất tinh bột sắn bằng thủ công được thực hiện ở các công đoạn hết sức đơn giản chỉ cần phá vở cấu trúc tế bào và thu hồi tinh bột. Quy trình sản xuất gián đoạn , thiết bị củ kỹ, lạc hậu, thô sơ không đồng bộ nên mức độ cơ giới hoá thấp. Vì vậy hiệu quả thu hồi tinh bột không cao.
D./ GIỚI THIỆU MỘT SỐ DÂY CHUYỀN CÔNG NGHỆ XỬ LÝ NƯỚC THẢI TINH BỘT SẮN


Sơ đồ công nghệ xử lý nước thải bằng các hồ sinh học (Hình III.1)







Nước thải được đưa vào bể điều hoà và lắng lọc sơ bộ để tách các tạp chất thô, sau đó được cho qua hệ thống hồ sinh học. Nước thải trong các hồ được làm sạch nhờ các quá trình phân huỷ tự nhiên của các vi sinh vật yếm khí và tuỳ tiện. Các hồ có độ sâu khoảng 3m, nước thải sau khi xử lý được qua hồ đối chứng rồi thải ra nguồn tiếp nhận.
+ Ưu điểm: Vốn đầu tư không lớn; vật tư trang thiết bị đơn giản; dễ vận hành; chi phí vận hành thấp; quá trình xử lý chủ yếu làm sạch tự nhiên nên tự động hoá không cao.
+ Nhược điểm: Diện tích xây dựng lớn; Hiệu quả xử lý không cao do phụ thuộc vào điều kiện tự nhiên; Thời gian lưu nước trong các hồ kéo dài (30 – 60 ngày) nên nước thải và bùn tích tụ trong các hồ lâu ngày gây mùi hôi thối, ảnh hưởng đến môi trường không khí.
Phương pháp xử lý này được áp dụng tại một số nhà máy như nhà máy tinh bột sắn Thừa Thiên Huế, Nhà máy tinh bột sắn Đaklak, nhà máy tinh bột sắn Quảng Ngãi…

Xử lý nước thải kết hợp hoá lý và sinh học hiếu khí (Hình III.2)
Nước thải trước khi vào hệ thống xử lý được thu gom vào bể điều hoà để điều chỉnh lưu lượng và nồng độ các chất ô nhiễm, sau đó nước thải được đưa qua bể keo tụ và lắng cấp I để tạo bông và lắng tách hàm lượng chất lơ lửng. Sau đó nước thải được đưa qua xử lý hiếu khí bằng bể Aeroten, sau đó nước thải được tách bùn tại bể lắng cấp 2. Để đảm bảo nước thải đạt tiêu chuẩn trước khi thải ra ngoài môi trường nước thải được keo tụ và lắng ở bể lắng cuối. Bùn từ các bể lắng được đưa đến bể nén bùn, tại bể nén bùn nước được đưa về bể điều hoà xử lý tiếp còn bùn được đưa đến sân phơi để tách nước và đem chôn lấp.

+ Ưu điểm: Hiệu quả xử lý cao rất thích hợp với nước thải sản xuất tinh bột sắn.
+ Nhược điểm: Giá thành xử lý của phương pháp này tương đối cao do sử dụng nhiều hoá chất. Quá trình keo tụ tương đối phức tạp, nếu quá trình keo tụ không tốt sẽ ảnh   hưởng đến quá trình xử lý bằng bể Aeroten, và ảnh hưỏng đến môi trường do sử dụng hoá chất keo tụ có hàm lượng kim loại.
Phương pháp này được áp dụng tại nhà máy tinh bột sắn Văn Yên – Yên Bái.
 E./ HỆ THỐNG XỬ LÝ NƯỚC THẢI NHÀ MÁY CHẾ BIẾN TINH BỘT SẮN QUẢNG NGÃI
Công nghệ xử lý nước thải:


Thuyết minh sơ đồ công nghệ:
Nước thải nhà máy chế biến tinh bột sắn Quảng Ngãi do có đặc tính ô nhiễm của các dòng thải khác nhau. Vì vậy nước thải được phân làm hai luồng:
- Nước thải tinh chế bột: Có lưu lượng Q = 2500m3/ngày, nồng độ các chất ô nhiếm cao COD = 10000mg/l; BOD = 7000mg/l: SS = 3000mg/l
- Nước thải rửa củ: Có nồng độ các chất ô nhiễm thấp hơn, lưu lượng nước thải Q = 2000m3/ngày; COD = 1500mg/l; BOD = 800mg/l; SS = 1200mg/l.
Hệ thống xử lý nước thải được thực hiện qua 3 công đoạn:
a. Công đoạn I: Xử lý cơ học và hoá lý
Đối với nước thải tinh chế bột:
Nước thải có độ ô nhiễm cao và hàm lượng cặn lơ lửng lớn do tinh bột thất thoát, xơ mịn …, với lưu lượng nước Q = 2500m3/ngày. Sau khi được tách bằng song chắn bã được chuyển về bể chứa bã, nước thải được chuyển về bể điều hoà kết hợp lắng, trước khi điều hoà nước thải được lắng thu hàm lượng tinh bột làm thức ăn cho gia súc (nước thải trích ly chứa nhiều hàm lượng tinh bột), nước thải vào bể điều hoà để điều chỉnh lưu lượng và nông độ, đảm bảo cho quá trình xử lý hóa lý và sinh học. Sau đó nước thải được đưa sang bể keo tụ. Chất keo tụ dùng là phèn nhôm và bổ sung thêm chất trợ lắng PAA. Sau khi hỗn hợp được hoà trộn và phản ứng tạo bông hình thành, nước thải đưa sang bể lắng tách cặn. Cặn lắng được chuyển về bể xử lý bùn.
Đối với nước thải rửa củ:
Nước thải rửa củ có độ ô nhiễm thấp hơn so với nước thải trích ly, nhưng nồng độ ô nhiễm cũng tương đối lớn. Dòng nước thải từ công đoạn rửa củ chứa nhiều vỏ lụa, các mảnh củ bị vở trong quá trình rửa nên được tách bằng song chắn trước khi qua bể lắng cát để tách đất cát. Sau đó nước thải được sang bể điều hoà để điều chỉnh lưu lượng và nồng độ chất ô nhiễm. Tại đây nước thải được tách 30% xử lý tiếp bằng hồ sinh học, còn 70% lưu lượng nước thải được chuyển sang bể keo tụ, chất keo tụ dùng là phèn nhôm, và chất trợ lắng PAA. Sau khi hỗn hợp được hoà trộn và phản ứng tạo bông được hình  hành, nước thải được đưa sang bể lắng tách cặn. Cặn lắng được chuyển sang bể xử lý bùn, còn nước trong tuần hoàn lại cho công đoạn rửa củ.
b. Công đoạn II: Xử lý sinh học yếm khí và hiếu khí
Đối với nước thải trích ly sau khi xử lý ở công đoạn I được xử lý yếm khí bằng bể UASB. Hiệu quả xử lý đạt 85%, nước thải sau bể UASB có COD biến động từ 500 - 600mg/l.
Khí sinh học (biogas) tạo thành chủ yếu là CH4 (60 – 70%) và CO2 (30 – 40%). Khí được qua hệ thống xử lý để loại tạp chất khí và hơi nước, sau đó được nén vào két chứa dùng làm nhiên liệu cấp nhiệt cho sấy khô tinh bột thành phẩm. Nước thải sau xử lý yếm khí (2500m3/ngày) cùng với nước thải rửa củ đã qua xử lý ở công đoạn I (600m3/ngày) được dẫn vào hồ hiếu khí. Không khí được cấp vào hồ bằng thiết bị cơ khí làm thoáng bề mặt đặt tại tâm của mỗi ô trong hồ. Khí làm thoáng cung cấp vào nước ở mật độ cao và một lượng oxy cần thiết sẽ được cung cấp cho bùn hoạt tính để loại bỏ chất ô nhiễm hữu cơ trong nước thải. Hồ hiếu khí có thời gian lưu khoảng 5 ngày, hiệu suất xử lý đạt 80 – 90% . Nước từ hồ hiếu khí được đưa sang hồ lắng để lắng cặn và nước được thải ra Suối Bản Thuyền. Cặn từ hồ lắng được lấy hằng năm và đưa đến sân phơi.
c. Công đoạn III: Xử lý bùn
Cặn từ các bể lắng, bùn từ bể UASB được chuyển về bể nén bùn. Sau khi cô đặc bùn đưa đến sân phơi bùn, còn nước bùn được tuần hoàn lại hồ hiếu khí để xử lý tiếp. Bùn sau khi phơi được đem chôn lấp hoặc làm phân bón cùng với vỏ sắn.
Ưu điểm của công nghệ như sau:
Với phương pháp xử lý hóa lý có tác dụng tách hàm lượng cặn lơ lửng lớn (tinh bột, xơ mịn, các tạp chất khác…) làm giảm đáng kể hàm lượng các chất ô nhiễm cho quá trình xử lý sinh học tiếp theo. Đồng thời sử dụng chất trợ lắng có nguồn gốc hữu cơ (PAA). Đây là chất khá phổ biến, rẽ tiền, dễ sử dụng và đặc biệt là không gây ô nhiễm thứ cấp do tự huỷ trong trong thời gian ngắn.
Phương pháp sinh học có thu hồi biogas: Bậc một là xử lý yếm khí UASB để giảm tải lượng khí ô nhiễm (nước thải có độ ô nhiễm rất cao) trước khi vào xử lý yếm khí bậc hai là hồ hiếu khí làm việc trong điều kiện sục khí liên tục. Phương pháp xử lý sinh học tận dụng thu được khí biogas sinh ra trong quá trình xử lý vào nhiều mục đích khác nhau.